百科名片:量子计算机

量子计算机(quantum computer)是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。当某个装置处理和计算的是量子信息,运行的是量子算法时,它就是量子计算机。量子计算机的概念源于对可逆计算机的研究。研究可逆计算机的目的是为了解决计算机中的能耗问题。

 

量子计算机,早先由理查德·费曼提出,一开始是从物理现象的模拟而来的。可他发现当模拟量子现象时,因为庞大的希尔伯特空间使资料量也变得庞大,一个完好的模拟所需的运算时间变得相当可观,甚至是不切实际的天文数字。理查德·费曼当时就想到,如果用量子系统构成的计算机来模拟量子现象,则运算时间可大幅度减少。量子计算机的概念从此诞生。

2

量子计算机,或推而广之——量子资讯科学,在1980年代多处于理论推导等纸上谈兵状态。一直到1994年彼得·秀尔(Peter Shor)提出量子质因子分解算法后,因其对于现在通行于银行及网络等处的RSA加密算法可以破解而构成威胁之后,量子计算机变成了热门的话题。除了理论之外,也有不少学者着力于利用各种量子系统来实现量子计算机。  半导体靠控制集成电路来记录和运算信息,量子电脑则希望控制原子或小分子的状态,记录和运算信息。  图2:布洛赫球面乃一种对于二阶量子系统之纯态空间的几何表示法,是建立量子计算机的基础。  20世纪60年代至70年代,人们发现能耗会导致计算机中的芯片发热,极大地影响了芯片的集成度,从而限制了计算机的运行速度。研究发现,能耗来源于计算过程中的不可逆操作。那么,是否计算过程必须要用不可逆操作才能完成呢?问题的答案是:所有经典计算机都可以找到一种对应的可逆计算机,而且不影响运算能力。既然计算机中的每一步操作都可以改造为可逆操作,那么在量子力学中,它就可以用一个幺正变换来表示。早期量子计算机,实际上是用量子力学语言描述的经典计算机,并没有用到量子力学的本质特性,如量子态的叠加性和相干性。在经典计算机中,基本信息单位为比特,运算对象是各种比特序列。与此类似,在量子计算机中,基本信息单位是量子比特,运算对象是量子比特序列。所不同的是,量子比特序列不但可以处于各种正交态的叠加态上,而且还可以处于纠缠态上。这些特殊的量子态,不仅提供了量子并行计算的可能,而且还将带来许多奇妙的性质。与经典计算机不同,量子计算机可以做任意的幺正变换,在得到输出态后,进行测量得出计算结果。因此,量子计算对经典计算作了极大的扩充,在数学形式上,经典计算可看作是一类特殊的量子计算。量子计算机对每一个叠加分量进行变换,所有这些变换同时完成,并按一定的概率幅叠加起来,给出结果,这种计算称作量子并行计算。除了进行并行计算外,量子计算机的另一重要用途是模拟量子系统,这项工作是经典计算机无法胜任的。  1994年,贝尔实验室的专家彼得·秀尔(Peter Shor)证明量子计算机能完成对数运算,而且速度远胜传统计算机。这是因为量子不像半导体只能记录0与1,可以同时表示多种状态。如果把半导体计算机比成单一乐器,量子计算机就像交响乐团,一次运算可以处理多种不同状况,因此,一个40位元的量子计算机,就能解开1024位元的电子计算机花上数十年解决的问题。

有趣的量子理论

量子论的一些基本论点显得并不“玄乎”,但它的推论显得很“玄”。我们假设一个“量子”距离也就是最小距离的两个端点A和B。按照量子论,物体从A不经过A和B中的任何一个点就能直接到达B。换句话说,物体在A点突然消失,与此同时在B点出现。除了神话,你无法在现实的宏观世界找到一个这样的例子。量子论把人们在宏观世界里建立起来的“常识”和“直觉”打个了七零八落。  薛定谔猫是关于量子理论的一个理想实验。实验内容是:这只猫十分可怜,它被封在一个密室里,密室里有食物有毒药。毒药瓶上有一个锤子,锤子由一个电子开关控制,电子开关由放射性原子控制。如果原子核衰变,则放出α粒子,触动电子开关,锤子落下,砸碎毒药瓶,释放出里面的氰化物气体,猫必死无疑。这个残忍的装置由奥地利物理学家埃尔温·薛定谔所设计,所以此猫便叫做薛定谔猫。量子理论认为:如果没有揭开盖子,进行观察,我们永远也不知道猫是死是活,它将永远处于非死非活的叠加态,这与我们的日常经验严重相违。

编辑本段概念

量子计算机,顾名思义,就是实现量子计算的机器。要说清楚量子计算,首先看经典计算。经典计算机从物理上可以被描述为对输入信号序列按一定算法进行变换的机器,其算法由计算机的内部逻辑电路来实现。

经典计算机的特点

1.其输入态和输出态都是经典信号,用量子力学的语言来描述,也即是:其输入态和输出态都是某一力学量的本征态。如输入二进制序列0110110,用量子记号,即|0110110>。所有的输入态均相互正交。对经典计算机不可能输入如下叠加态:C1|0110110 >+ C2|1001001>。  2.经典计算机内部的每一步变换都演化为正交态,而一般的量子变换没有这个性质,因此,经典计算机中的变换(或计算)只对

量子计算机

应一类特殊集。

量子计算机的特点

相应于经典计算机的以上两个限制,量子计算机分别作了推广。量子计算机的输入用一个具有有限能级的量子系统来描述,如二能级系统(称为量子比特(qubits)),量子计算机的变换(即量子计算)包括所有可能的玄正变换。  1.量子计算机的输入态和输出态为一般的叠加态,其相互之间通常不正交;  2量子计算机中的变换为所有可能的么正变换。得出输出态之后,量子计算机对输出态进行一定的测量,给出计算结果。  由此可见,量子计算对经典计算作了极大的扩充,经典计算是一类特殊的量子计算。量子计算最本质的特征为量子叠加性和量子相干性。量子计算机对每一个叠加分量实现的变换相当于一种经典计算,所有这些经典计算同时完成,并按一定的概率振幅叠加起来,给出量子计算机的输出结果。这种计算称为量子并行计算。  无论是量子并行计算还是量子模拟计算,本质上都是利用了量子相干性。遗憾的是,在实际系统中量子相干性很难保持。在量子计算机中,量子比特不是一个孤立的系统,它会与外部环境发生相互作用,导致量子相干性的衰减,即消相干(也称“退相干”)。因此,要使量子计算成为现

承载16个量子位的硅芯片

实,一个核心问题就是克服消相干。而量子编码是迄今发现的克服消相干最有效的方法。主要的几种量子编码方案是:量子纠错码、量子避错码和量子防错码。量子纠错码是经典纠错码的类比,是目前研究的最多的一类编码,其优点为适用范围广,缺点是效率不高。  迄今为止,世界上还没有真正意义上的量子计算机。但是,世界各地的许多实验室正在以巨大的热情追寻着这个梦想。如何实现量子计算,方案并不少,问题是在实验上实现对微观量子态的操纵确实太困难了。目前已经提出的方案主要利用了原子和光腔相互作用、冷阱束缚离子、电子或核自旋共振、量子点操纵、超导量子干涉等。现在还很难说哪一种方案更有前景,只是量子点方案和超导约瑟夫森结方案更适合集成化和小型化。将来也许现有的方案都派不上用场,最后脱颖而出的是一种全新的设计,而这种新设计又是以某种新材料为基础,就像半导体材料对于电子计算机一样。研究量子计算机的目的不是要用它来取代现有的计算机。量子计算机使计算的概念焕然一新,这是量子计算机与其他计算机如光计算机和生物计算机等的不同之处。量子计算机的作用远不止是解决一些经典计算

量子计算机原理

机无法解决的问题。

量子计算机能做什么

量子计算机可以进行大数的因式分解,和Grover搜索破译密码,但是同时也提供了另一种保密通讯的方式。在利用EPR对进行量子通讯的实验中中我们发现,只有拥有EPR对的双方才可能完成量子信息的传递,任何第三方的窃听者都不能获得完全的量子信息,正所谓解铃还需系铃人,这样实现的量子通讯才是真正不会被破解的保密通讯。此外量子计算机还可以用来做量子系统的模拟,人们一旦有了量子模拟计算机,就无需求解薛定愕方程或者采用蒙特卡罗方法在经典计算机上做数值计算,便可精确地研究量子体系的特征。  量子计算机是通过量子分裂式、量子修补式来进行一系列的大规模高精确度的运算的。其浮点运算性能是普通家用电脑的CPU所无法比拟的,量子计算机大规模运算的方式其实就类似于普通电脑的批处理程序,其运算方式简单来说就是通过大量的量子分裂,再进行高速的量子修补,但是其精确度和速度也是普通电脑望尘莫及的,因此造价相当惊人。目前唯一一台量子计算机仍在微软的硅谷老家中,尚在试验阶段,离投入使用还会有一段时间。量子计算机当然不是给我们用来玩电子游戏的,因为这好比拿激光

硅芯片上16个量子位的光学照片

切割机去切纸,其主要用途是例如象测量星体精确坐标、快速计算不规则立体图形体积、精确控制机器人或人工智能等需要大规模、高精度的高速浮点运算的工作。在运行这一系列高难度运算的背后,是可怕的能量消耗、不怎么长的使用寿命和恐怖的热量。  假设1吨铀235通过核发电机1天能提供7000万瓦伏电量,但这些电量在短短的10天就会被消耗殆尽,这是最保守的估计;如果一台量子计算机一天工作4小时左右,那么它的寿命将只有可怜的2年,如果工作6小时以上,恐怕连1年都不行,这也是最保守的估计;假定量子计算机每小时有70摄氏度,那么2小时内机箱将达到200度,6小时恐怕散热装置都要被融化了,这还是最保守的估计!  由此看来,高能短命的量子计算机恐怕离我们的生活还将有一段漫长的距离,就让我们迎着未来的曙光拭目以待吧!

量子计算机的工作原理

普通的数字计算机在0和1的二进制系统上运行,称为“比特”(bit)。但量子计算机要远远更为强大。它们可以在量子位(qubit)上运算,可以计算0和1之间的数值。假想一个放置在磁场中的原子,它像陀螺一样旋转,于是它的旋转轴可以不是向上指就是向下指。常识告诉我们:原子的旋转可能向上也可能向下,但不可能同时都进行。但在量子的奇异世界中,原子被描述为两种状态的总和,一个向上转的原子和一个向下转的原子的总和。在量子的奇妙世界中,每一种物体都被使用所有不可思议状态的总和来描述。  现在,想象一串原子排列在一个磁场中,以相同的方式旋转。如果一束激光照射在这串原子上方,激光束会跃下这组原子,迅速翻转一些原子的旋转轴。通过测量进入的和离开的激光束的差异,我们已经完成了一次复杂的量子“计算”,涉及了许多自旋的快速移动。

目前发展的系统

包括如下物理系统:  液态核磁共振量子计算机(liquid-state NMR quantum computer)  (固态)硅晶体核磁共振量子计算机(silicon-based NMR quantum computer)  离子陷阱(ion trap)  量子光学(quantum optics)  腔室量子电动力学(cavity QED)  超导体方案  等等方法,各自有各自的瓶颈。

编辑本段名称的不同

关于在中国台湾的名称

在中国台湾,由于人们习惯上将电子计算机称为“电脑”,所以许多人往往沿用其名称而将量子计算机称为“量子电脑”。因而,在台湾两种名称皆可见到,不过后者使用得更多。  事实上在台湾,“计算机”指的是Calculator,就是一般店员在卖东西时,计算简单加减乘除用的那种巴掌大的计算工具。台湾人由于电子工业发展得早,1970年代就大量使用“计算机”这种方便的工具来做商业计算,对应到Computer时,当然不能用“计算机”来称呼这种能够复杂计算的新产品了,于是台湾人说的“电脑”,指的是像Intel/AMD的x86类CPU或Macintosh的PowerPC/Intel MAC这种有着复杂计算的机器。  香港与台湾一样也称Computer为“电脑”。

关于在中国大陆的名称

在中国大陆地区,Computer可以称为“计算机”或者“电脑 ”。其中“电脑 ”更为广泛的指家用电脑,而“计算机”更多的指具有科研等目的专业、非多媒体计算机。由于量子技术还处于起步阶段,只能在实验室见到,故多称“量子计算机”而非“量子电脑 ”。  Calculator被称为“计算器”,而非“计算机”。在中文中,“器”多指具有简单结构、功能的对象;而“机”多指具有复杂结构、功能的对象。因此,“计算器”和“计算机”能很直接的区别calculator和computer。

编辑本段展望

未来

现在用原子实现的量子计算机只有5个q-bit,放在一个试管中而且配备有庞大的外围设备,只能做1+1=2的简单运算,正如Bennett教授所说,“现在的量子计算机只是一个玩具,真正做到有实用价值的也许是5年,10年,甚至是50年以后”,我国量子信息专家中国科技大学的郭光灿教授则宣称,他领导的实验室将在5年之内研制出实用化的量子密码,来服务于社会!科学技术的发展过程充满了偶然和未知,就算是物理学泰斗爱因斯坦也决不会想到,为了批判量子力学而用他的聪明大脑假想出来的EPR态,在六十多年后不仅被证明是存在的,而且还被用来做量子计算机。

量子计算机的广阔前景

社会生产力的发展是科学发展的基石和原动力,从物理学的诞生到技术文明高度发达的今天都是如此。  近年来由于社会对高速、保密、大容量的通讯及计算的需求,促进了量子信息、量子计算理论与实验的迅速发展。  目前,美国的洛斯阿拉莫斯和麻省理工学院、IBM、和斯坦福大学、武汉物理教学所、清华大学四个研究组已实现7个量子比特量子算法演示。  2007年2月,加拿大D-Wave系统公司宣布研制成功16位量子比特的超导量子计算机(尚未经科学检验),如果他们是诚信的,这个工作的意义就非常重大,或许,可实际应用的量子计算机会在几年内出现,量子计算机的时代真的要开始了!  2010年3月31日,德国于利希研究中心发表公报:德国超级计算机成功模拟42位量子计算机,该中心的超级计算机JUGENE成功模拟了42位的量子计算机,在此基础上研究人员首次能够仔细地研究高位数量子计算机系统的特性。

编辑本段研发现状

世界首台量子计算机在美国问世

1920年,奥地利人埃尔温。薛定谔、爱因斯坦、德国人海森伯格和狄拉克,共同创建了一个前所未有的新学科——量子力学。量子力学的诞生为人类未来的第四次工业革命打下了基础。在它的基础上人们发现了一个新的技术,就是量子计算机。  量子计算机的技术概念最早由理查得·费曼提出,后经过很多年的研究这一技术已初步见成效。  2009年11月15日,世界首台量子计算机正式在美国诞生,  这一量子计算机由美国国家标准技术研究院研制,可处理两个量子比特的数据。较之传统计算机中的“0”和“1”比特,量子比特能存储更多的信息,因而量子计算机的性能将大大超越传统计算机。  研究人员‘大卫·汉尼克’表示,通用编程量子计算机采用了量子逻辑门技术来处理数据。制造量子逻辑门需设计一系列激光脉冲,以操纵铍离子进行数据处理,再由另一个激光脉冲读取计算结果。一个简单的单量子比特门,可从0转换成1,也可从1转换成0。但与传统计算机的物理逻辑门不同的是,这台设备的量子逻辑门均已编码成激光脉冲。当激光脉冲量子门对量子比特实行简单逻辑操作时,铍离子便会开始旋转,实现对量子比特的存储。  这台量子计算机的核心部件是具金色图样的铝晶片,内含直径约为200微米的电磁圈。科学家将两个镁离子和两个铍离子置于电磁圈中,镁离子可起到“稳定剂”的作用,消除离子链的不必要振动,保持计算机的稳定性。  由于两个量子比特的操作具有多种可能,研究小组随机选取了160种操作方式进行了演示,以验证处理器的通用性。每次操作都用31个不同的量子门击打量子比特,将其编码成激光脉冲。这其中大部分为单量子比特门,脉冲只需要与单一离子进行相互作用。少数的双量子比特门则需要与两个离子同时发生交互作用。而通过对电磁圈旁黄金电极上的电荷进行控制,研究人员能有效增加所需的离子数量。  不过,这一量子计算机仍存在着相当的问题。例如,尽管每个量子门的准确率都在90%以上,而当综合使用时计算机的整体准确率却下降到 79%。这主要是由于激光脉冲的强度不同所造成的,汉内克解释说:“脉冲的波动性可造成这种误差,而光线的散射和反射等,也可能是原因。”  研究小组表示,通过提升激光的稳定性和减少光学设备的误差,可有效提高芯片的运行准确率。在准确率提升至99.99%时,该芯片才能作为量子处理器的主要部件,最终实现通用编程量子计算机的实际应用。

最新研究结果

据美国物理学家组织网5月3日(北京时间)报道,德国马克斯普朗克量子光学研究所的科学家格哈德·瑞普领导的科研小组,首次成功地实现了用单原子存储量子信息——将单个光子的量子状态写入一个铷原子中,经过180微秒后将其读出。最新突破有望助力科学家设计出功能强大的量子计算机,并让其远距离联网构建“量子网络”。  量子计算机因其能同时处理用单个原子和光子等微观物理系统的量子状态存储的很多信息,计算速度更快。但量子计算机进行操作时,其内部不同组件之间必须能进行信息交换。因此,科学家希望量子信息能在光子和物质粒子之间交换。  此前,科学家实现了光子和数千个原子集合之间的信息交换,现在首次证明,采用一种可控的方式,量子信息也能在单个原子和光子之间交换。实现光子和单个原子之间信息交换的最大障碍是,光子和原子之间的相互作用太微弱。在最新研究中,科学家将一个铷原子放在一个光学共振器的两面镜子间,接着使用非常微弱的激光脉冲让单光子进入该共振器中。共振器的镜子将光子前后反射了多次,大大增强了光子和原子之间的相互作用。  研究人员还通过添加一束激光——控制激光(在铷原子同光子相互作用时,直接射向铷原子),让铷原子吸收一个光子,从而让铷原子进入一种稳定的量子状态。且原子自旋会产生磁矩,该磁矩的方向将决定用来存储信息的稳定的量子状态。  这个状态可被相反的过程读出:他们再次使用控制激光照射铷原子,使其重新释放出刚开始入射的光子。结果发现,在大多数情况下,读出的量子信息同最初存储的信息一致,也就是所谓的保真度超过90%。而传统不基于量子效应获取的保真度仅为67%。且量子信息在铷原子内的存储时间约为180微秒,这能与以前基于多个原子方法获得的量子存储时间相媲美。  但是量子计算机或量子网络所要求的存储时间要比这更长。另外,受到照射的光子中有多少被存储接着被读出——所谓的效率,现在还不到10%。科学家正着力进行研究以改进存储时间和效率。  研究人员霍尔格·斯派克特表示,使用单个原子作为存储单元有几大优势:首先单个原子很小。其次,存储在原子上的信息能被直接操作,这一点对于量子计算机内逻辑操作的执行来说非常重要。另外,它还可以核查出光子中的量子信息是否在不破坏量子状态的情况下被成功写入原子中,一旦发现存储出错,就会重复该过程,直到将量子信息写入原子中。  另一名科学家斯蒂芬·里特表示,单原子量子存储的前景不可估量。光和单个原子之间的相互作用让量子计算机内的更多原子能相互联网,这会大大增强量子计算机的功能。而且,光子之间的信息交换会使原子在长距离内实现量子纠缠。因此,科学家们正在研发的最新技术有望成为未来“量子网络”的必备零件。

国内量子计算机发展现状

2007年初,中国科技大学微尺度国家实验室潘建伟小组在《Nature·Physical》上发表论文,宣布成功制备了国际上纠缠光子数最多的“薛定谔猫”态和单向量子计算机,刷新了光子纠缠和量子计算领域的两项世界记录,成果被欧洲物理学会和《Nature》杂志等广泛报道。四月,该小组提出并实验实现不需要纠缠辅助的新型光学控制非门,减少了量子网络电路的资源消耗。九月,该小组利用光子“超纠缠簇态”演示了单向量子计算的物理过程,实现了量子搜索算法,论文发表在《Physical Review Letters》上。  此后,该小组又在国际上首次利用光量子计算机实现了Shor量子分解算法,研究成果发表在国际最权威物理学期刊《Physical Review Letters》上,标志着我国光学量子计算研究达到了国际领先水平。 这一系列高质量的工作已经获得了国际学术界的广泛关注和认可。  特别引人注目的是,英国《新科学家》杂志在“中国崛起”的专栏中,把中科大在量子计算领域取得的一系列成就作为中国科技崛起的重要代表性成果,进行了专门介绍。

编辑本段第一台商业化量子计算机

在2007年,加拿大计算机公司D-Wave展示了全球首台量子计算机“Orion(猎户座)”。虽然当时只是一台能通过量子力学解决部分问题的原型机,不过也让我们看见了量子计算机的曙光。

样图(1张)

近日,D-Wave自豪地宣布,全球首台真正的商用量子计算机D-Wave One终于诞生了!其采用了128-qubit(量子比特)的量子处理器,性能是原型机的四倍,理论运算速度远远超越现有所有的超级计算机。当然,由于其架构特别的关系,目前只能用于处理部分特定的任务,例如高智能AI运算等,通用性还有尚不及现有的传统电脑。同时,D-Wave One在散热方面亦有非常苛刻的要求,自启动起其必须全程采用液氦散热,以保证其在运行过程中足够“冷静”。  当然了,这样的产品自然不是一般老百姓可以消费的。据称,一台D-Wave One的售价高达1000万美元,而且这个价格还未确定是否包括其中的液氦散热系统。不过作为新技术的开端,这个价格也是必然的。我们相信,随着科技的发展,量子计算机“走入寻常百姓家”将不再是梦想。

 

来自百度百科:http://baike.baidu.com/view/18645.htm